Bachelor's Degrees The table shows the numbers B (in thousands) of bachelor's degrees earned by women in the United States from 2001 through 2012. The data can be approximated by the linear model
$B=26.47 t+690.6, \quad 1 \leq t \leq 12$
where t represents the year, with $t=1$ corresponding to 2001. (Source: National Center for Education Statistics)

	Year	Bachelor's degrees, B
	2001	712
	2002	742
	2003	776
	2004	804
	2005	826
	2006	855
	2007	875
	2008	895
	2009	916
	2010	943
	2011	982
	2012	1026

(a) Use a graphing utility to plot the data and graph the model in the same viewing window.
(b) Use the model to approximate the number of bachelor's degrees earned by women for each year from 2001 through 2012.
(c) Compare the estimated to the actual data. Is the model a good fit for the data? Explain.
(d) What are the slope and y-intercept of the model? Interpret their meaning in the context of the problem.
(e) Use the model to predict the number of bachelor's degrees earned by women in 2018.

