Name: 
 

Chapter 5 Pre Test



 1. 

Use the given values to evaluate (if possible) three trigonometric functions cotx, secx, cosx.

mc001-1.jpg,   mc001-2.jpg
a.
mc001-3.jpg
mc001-4.jpg
mc001-5.jpg
b.
mc001-6.jpg
mc001-7.jpg
mc001-8.jpg
c.
mc001-9.jpg
mc001-10.jpg
mc001-11.jpg
d.
mc001-12.jpg
mc001-13.jpg
mc001-14.jpg
e.
mc001-15.jpg
mc001-16.jpg
mc001-17.jpg
 

 2. 

Factor; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent.
mc002-1.jpg
a.
mc002-2.jpg
b.
mc002-3.jpg
c.
mc002-4.jpg
d.
mc002-5.jpg
e.
mc002-6.jpg
 

 3. 

Evaluate the following expression.

mc003-1.jpg
a.
mc003-2.jpg
b.
mc003-3.jpg
c.
mc003-4.jpg
d.
mc003-5.jpg
e.
mc003-6.jpg
 

 4. 

Evaluate the following expression.

mc004-1.jpg
a.
mc004-2.jpg
b.
mc004-3.jpg
c.
mc004-4.jpg
d.
mc004-5.jpg
e.
mc004-6.jpg
 

 5. 

Evaluate the expression.

mc005-1.jpg
a.
0
b.
mc005-2.jpg
c.
mc005-3.jpg
d.
mc005-4.jpg
e.
mc005-5.jpg
 

 6. 

Use a graphing utility to graph the function.

mc006-1.jpg

a.

mc006-2.jpg
d.

mc006-5.jpg
b.

mc006-3.jpg
e.

mc006-6.jpg
c.

mc006-4.jpg
 

 7. 

A Ferris wheel is built such that the height h (in feet) above the ground of a seat on the wheel at time t (in seconds) can be modeled by mc007-1.jpg. The wheel makes one revolution every 36 seconds and the ride begins when mc007-2.jpg. During the first 36 seconds of the ride, when will a person, who starts at the bottom of the Ferris wheel, be mc007-3.jpg feet above the ground?
a.
10 seconds and 22 seconds
b.
10 seconds and 17 seconds
c.
9 seconds and 27 seconds
d.
9 seconds and 22 seconds
e.
9 seconds and 17 seconds
 

 8. 

Find the expression as the sine of an angle.

mc008-1.jpg
a.
mc008-2.jpg
b.
mc008-3.jpg
c.
mc008-4.jpg
d.
mc008-5.jpg
e.
mc008-6.jpg
 

 9. 

Find the expression as the sine or cosine of an angle.

mc009-1.jpg
a.
mc009-2.jpg
b.
mc009-3.jpg
c.
mc009-4.jpg
d.
mc009-5.jpg
e.
mc009-6.jpg
 

 10. 

A weight is attached to a spring suspended vertically from a ceiling. When a driving force is applied to the system, the weight moves vertically from its equilibrium position, and this motion is modeled by

mc010-1.jpg
where y is the distance from equilibrium (in feet) and t is the time (in seconds).
Find the amplitude of the oscillations of the weight.
a.
mc010-2.jpg
b.
mc010-3.jpg
c.
mc010-4.jpg
d.
mc010-5.jpg
e.
mc010-6.jpg
 

 11. 

Use a double-angle formula to rewrite the expression.

mc011-1.jpg
a.
mc011-2.jpg
b.
mc011-3.jpg
c.
mc011-4.jpg
d.
mc011-5.jpg
e.
mc011-6.jpg
 

 12. 

Use the sum-to-product formulas to select the sum or difference as a product.

mc012-1.jpg
a.
mc012-2.jpg
b.
mc012-3.jpg
c.
mc012-4.jpg
d.
mc012-5.jpg
e.
mc012-6.jpg
 

 13. 

Use the sum-to-product formulas to select the sum or difference as a product.

mc013-1.jpg
a.
mc013-2.jpg
b.
mc013-3.jpg
c.
mc013-4.jpg
d.
mc013-5.jpg
e.
mc013-6.jpg
 

 14. 

Find the exact solutions of the given equation in the interval mc014-1.jpg.
mc014-2.jpg
a.
mc014-3.jpg
b.
mc014-4.jpg
c.
mc014-5.jpg
d.
mc014-6.jpg
e.
mc014-7.jpg
 

 15. 

Find values for mc015-1.jpg such that the triangle has no solutions.

mc015-2.jpg
a.
mc015-3.jpg
b.
mc015-4.jpg
c.
mc015-5.jpg
d.
mc015-6.jpg
e.
mc015-7.jpg
 

 16. 

Find values for mc016-1.jpg such that the triangle has one solution.

mc016-2.jpg
a.
mc016-3.jpg
b.
mc016-4.jpg
c.
mc016-5.jpg
d.
mc016-6.jpg
e.
mc016-7.jpg
 

 17. 

Given mc017-1.jpg, mc017-2.jpg, and mc017-3.jpg, use the Law of Sines to solve the triangle for the value of b. Round answer to two decimal places.
a.
mc017-4.jpg
b.
mc017-5.jpg
c.
mc017-6.jpg
d.
mc017-7.jpg
e.
mc017-8.jpg
 

 18. 

After a severe storm, three sisters, April, May, and June, stood on their front porch and noticed that the tree in their front yard was leaning mc018-1.jpg from vertical toward the house. From the porch, which is 98 feet away from the base of the tree, they noticed that the angle of elevation to the top of the tree was mc018-2.jpg. Approximate the height of the tree. Round answer to two decimal places.
a.
47.99 feet
b.
56.03 feet
c.
41.91 feet
d.
45.31 feet
e.
46.03 feet
 

 19. 

Use the Heron’s formula to find the area of the triangle. Round your answer upto one decimal place.

mc019-1.jpg

a.
mc019-2.jpg
b.
mc019-3.jpg
c.
mc019-4.jpg
d.
mc019-5.jpg
e.
mc019-6.jpg
 

 20. 

Given mc020-1.jpg, mc020-2.jpg, and mc020-3.jpg, use Heron's Area Formula to find the area of triangle mc020-4.jpg. Round answer to two decimal places.
a.
63.71 sq. units
b.
54.89 sq. units
c.
49.12 sq. units
d.
51.31 sq. units
e.
55.42 sq. units
 



 
Check Your Work     Start Over