Name: 
 

Chapter 6 Post Test



 1. 

Find the angle mc001-1.jpg (in radians and degrees) between the lines. Round your answer to four decimal places for radians and round your answer to one decimal places for degree.

mc001-2.jpg

mc001-3.jpg
a.
mc001-4.jpg
b.
mc001-5.jpg
c.
mc001-6.jpg
d.
mc001-7.jpg
e.
mc001-8.jpg
 

 2. 

Find the angle mc002-1.jpg (in radians and degrees) between the lines. Round your answer to four decimal places for radians and round your answer to one decimal places for degree.

mc002-2.jpg
a.
mc002-3.jpg
b.
mc002-4.jpg
c.
mc002-5.jpg
d.
mc002-6.jpg
e.
mc002-7.jpg
 

 3. 

Consider a line with slope m and y-intercept mc003-1.jpg. Select the graph of  the distance between the origin and the line.
a.

mc003-2.jpg
d.

mc003-5.jpg
b.

mc003-3.jpg
e.

mc003-6.jpg
c.

mc003-4.jpg
 

 4. 

Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin.

Horizontal axis and passes through the point mc004-1.jpg
a.
mc004-2.jpg mc004-3.jpg
b.
mc004-4.jpg mc004-5.jpgx
c.
mc004-6.jpg mc004-7.jpgx
d.
mc004-8.jpg mc004-9.jpgy
e.
mc004-10.jpg x
 

 5. 

The revenue R (in dollars) generated by the sale of x units of a patio furniture set is given by
mc005-1.jpg.
Approximate the number of sales that will maximize revenue.
a.
mc005-2.jpg
The revenue is maximum when mc005-3.jpg units.
b.
mc005-4.jpg
The revenue is maximum when mc005-5.jpg units.
c.
mc005-6.jpg
The revenue is maximum when mc005-7.jpg units.
d.
mc005-8.jpg
The revenue is maximum when mc005-9.jpg units.
e.
mc005-10.jpg
The revenue is maximum when mc005-11.jpg units.
 

 6. 

Find the vertex and focus of the parabola.
mc006-1.jpg
a.
vertex: (0, 0)     focus: mc006-2.jpg
b.
vertex: (0, 0)     focus: mc006-3.jpg
c.
vertex: mc006-4.jpg     focus: mc006-5.jpg
d.
vertex: (0, 0)     focus: mc006-6.jpg
e.
vertex: mc006-7.jpg     focus: mc006-8.jpg
 

 7. 

Find the center and vertices of the ellipse.

mc007-1.jpg = 0
a.
center: (3, –8)            vertices: (0, –8), (6, –8)
b.
center: (–8, 3)            vertices: (–11, 3), (–5, 3)
c.
center: (8, –3)              vertices: (7, –3), (9, –3)
d.
center: (8, –3)                vertices: (5, –3), (11, –3)
e.
center: (–8, 3)            vertices: (–9, 3), (–7, 3)
 

 8. 

Find the center, vertices and foci of the hyperbola.

mc008-1.jpg
a.
Center: mc008-2.jpg
Vertices:  mc008-3.jpg
Foci:mc008-4.jpgmc008-5.jpg, mc008-6.jpg
b.
Center: mc008-7.jpg
Vertices:  mc008-8.jpg
Foci:mc008-9.jpgmc008-10.jpg, mc008-11.jpg
c.
Center: mc008-12.jpg
Vertices:  mc008-13.jpg
Foci:mc008-14.jpgmc008-15.jpg, mc008-16.jpg
d.
Center: mc008-17.jpg
Vertices:  mc008-18.jpg
Foci:mc008-19.jpgmc008-20.jpg, mc008-21.jpg
e.
Center: mc008-22.jpg
Vertices:  mc008-23.jpg
Foci:mc008-24.jpg mc008-25.jpgmc008-26.jpg)
 

 9. 

Find the standard form of the equation of the hyperbola with the given characteristics and center at the origin.

Vertices: mc009-1.jpg; foci: mc009-2.jpg
a.
mc009-3.jpg
b.
mc009-4.jpg
c.
mc009-5.jpg
d.
mc009-6.jpg
e.
mc009-7.jpg
 

 10. 

Find the standard form of the equation of the hyperbola with the given characteristics.

Vertices: (4,0),(8,0); foci: (0,0), (10,0)
a.
mc010-1.jpg
b.
mc010-2.jpg
c.
mc010-3.jpg
d.
mc010-4.jpg
e.
mc010-5.jpg
 

 11. 

Select the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola.

mc011-1.jpg
a.
Ellipse
b.
Circle
c.
Hyperbola
d.
Parabola
e.
None of the above
 

 12. 

Find the center and foci of the hyperbola.
mc012-1.jpg
a.
center: (–1, –4), foci: (–9, –4), (7, –4)
b.
center: (–1, –4), foci: (–1, –12), (–1, 4)
c.
center: (4, 1), foci: (4, –7), (4, 9)
d.
center: (–4, –1), foci: (–12, –1), (4, –1)
e.
center: (1, 4), foci: (1, –4), (1, 12)
 

 13. 

A point in rectangular coordinates is given. Convert the point to polar coordinates.

mc013-1.jpg
a.
mc013-2.jpg
b.
mc013-3.jpg
c.
mc013-4.jpg
d.
mc013-5.jpg
e.
mc013-6.jpg
 

 14. 

Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.

mc014-1.jpg
a.
Symmetric with respect to polar axis
mc014-2.jpg
mc014-3.jpg
d.
Symmetric with respect to polar axis
mc014-8.jpg

mc014-9.jpg
b.
Symmetric with respect to polar axis
mc014-4.jpg
mc014-5.jpg
e.
Symmetric with respect to polar axis
mc014-10.jpg
mc014-11.jpg
c.
Symmetric with respect to polar axis
mc014-6.jpg
mc014-7.jpg
 

 15. 

Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.

mc015-1.jpg
a.
Symmetric with respect to mc015-2.jpg, the polar axis, and the pole
mc015-3.jpg

mc015-4.jpg
d.
Symmetric with respect to mc015-11.jpg, the polar axis, and the pole
mc015-12.jpg

mc015-13.jpg
b.
Symmetric with respect to mc015-5.jpg, the polar axis, and the pole
mc015-6.jpg

mc015-7.jpg
e.
Symmetric with respect to mc015-14.jpg, the polar axis, and the pole
mc015-15.jpg

mc015-16.jpg
c.
Symmetric with respect to mc015-8.jpg, the polar axis, and the pole
mc015-9.jpg

mc015-10.jpg
 

 16. 

Select the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.

mc016-1.jpg
a.
Symmetric with respect to the polar axis
mc016-2.jpg

mc016-3.jpg
d.
Symmetric with respect to the polar axis
mc016-8.jpg

mc016-9.jpg
b.
Symmetric with respect to the polar axis
mc016-4.jpg

mc016-5.jpg
e.
Symmetric with respect to the polar axis
mc016-10.jpg

mc016-11.jpg
c.
Symmetric with respect to the polar axis
mc016-6.jpg

mc016-7.jpg
 

 17. 

Select the graph of the equation.

mc017-1.jpg
a.

mc017-2.jpg
d.

mc017-5.jpg
b.

mc017-3.jpg
e.

mc017-6.jpg
c.

mc017-4.jpg
 

 18. 

Identify the conic and select its correct graph.

mc018-1.jpg
a.
mc018-2.jpg Ellipse

mc018-3.jpg

d.
mc018-8.jpg Ellipse

mc018-9.jpg

b.
mc018-4.jpg Ellipse

mc018-5.jpg

e.
mc018-10.jpg Ellipse

mc018-11.jpg
c.
mc018-6.jpg Ellipse

mc018-7.jpg

 

 19. 

Select correct graph to graph rotated conic.

mc019-1.jpg
a.
   mc019-2.jpg
d.

mc019-5.jpg
b.

mc019-3.jpg
e.

mc019-6.jpg 
c.
  mc019-4.jpg
 

 20. 

Find a polar equation of the conic with its focus at the pole.

mc020-1.jpg
a.
mc020-2.jpg   
b.
mc020-3.jpg
c.
mc020-4.jpg
d.
mc020-5.jpg
e.
mc020-6.jpg
 



 
Check Your Work     Start Over