Name: 
 

Chapter 6 Pre Test



 1. 

Find the angle mc001-1.jpg (in radians and degrees) between the lines. Round your answer to four decimal places for radians and round your answer to one decimal places for degree.

mc001-2.jpg
a.
mc001-3.jpg
b.
mc001-4.jpg
c.
mc001-5.jpg
d.
mc001-6.jpg
e.
mc001-7.jpg
 

 2. 

A roof has a rise of 5 feet for every horizontal change of 7 feet (see figure). Find the
inclination of the roof. Round your answers to one decimal place.

mc002-1.jpg

mc002-2.jpg
a.
mc002-3.jpg
b.
mc002-4.jpg
c.
mc002-5.jpg
d.
mc002-6.jpg
e.
mc002-7.jpg
 

 3. 

Find the standard form of the equation of the parabola with the given characteristic and vertex at the origin.

Focus: mc003-1.jpg
a.
mc003-2.jpg y
b.
mc003-3.jpg 28x
c.
mc003-4.jpg –28x
d.
mc003-5.jpg 28y
e.
mc003-6.jpg –28y
 

 4. 

Find the vertex, focus, and directrix of the parabola.

mc004-1.jpg
a.
Vertex: mc004-2.jpg; Focus: mc004-3.jpg; Directrix: mc004-4.jpg
b.
Vertex: mc004-5.jpg; Focus: mc004-6.jpg; Directrix: mc004-7.jpg
c.
Vertex: mc004-8.jpg; Focus: mc004-9.jpg; Directrix: mc004-10.jpg
d.
Vertex: mc004-11.jpg; Focus: mc004-12.jpg; Directrix: mc004-13.jpg
e.
Vertex: mc004-14.jpg; Focus: mc004-15.jpg; Directrix: mc004-16.jpg
 

 5. 

Find the standard form of the equation of the parabola with the given characteristics.

Vertex: mc005-1.jpg; focus: mc005-2.jpg
a.
mc005-3.jpg
b.
mc005-4.jpg
c.
mc005-5.jpg
d.
mc005-6.jpg
e.
mc005-7.jpg
 

 6. 

Find the center and vertices of the ellipse.

mc006-1.jpg = 0
a.
center: (3, –8)            vertices: (0, –8), (6, –8)
b.
center: (–8, 3)            vertices: (–11, 3), (–5, 3)
c.
center: (8, –3)              vertices: (7, –3), (9, –3)
d.
center: (8, –3)                vertices: (5, –3), (11, –3)
e.
center: (–8, 3)            vertices: (–9, 3), (–7, 3)
 

 7. 

Find the center, vertices and foci of the hyperbola.

mc007-1.jpg
a.
Center: mc007-2.jpg
Vertices: mc007-3.jpg
Foci: mc007-4.jpg
b.
Center: mc007-5.jpg
Vertices: mc007-6.jpg
Foci:mc007-7.jpg
c.
Center: mc007-8.jpg
Vertices: mc007-9.jpg
Foci: mc007-10.jpg
d.
Center: mc007-11.jpg
Vertices: mc007-12.jpg
Foci: mc007-13.jpg
e.
Center: mc007-14.jpg
Vertices: mc007-15.jpg
Foci: mc007-16.jpg
 

 8. 

Find the standard form of the equation of the hyperbola with the given characteristics and center at the origin.

Vertices: mc008-1.jpg; asymptotes: mc008-2.jpg mc008-3.jpg
a.
mc008-4.jpg
b.
mc008-5.jpg
c.
mc008-6.jpg
d.
mc008-7.jpg
e.
mc008-8.jpg
 

 9. 

Identify the equation as a circle, a parabola, an ellipse, or a hyperbola.

mc009-1.jpg
a.
Ellipse
b.
Parabola
c.
Hyperbola
d.
Circle
e.
None of the above
 

 10. 

Select the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola.

mc010-1.jpg
a.
Hyperbola
b.
Circle
c.
Parabola
d.
Ellipse
e.
None of the above
 

 11. 

Find the vertices and asymptotes of the hyperbola.
mc011-1.jpg
a.
vertices: mc011-2.jpg          asymptote: mc011-3.jpg
b.
vertices: mc011-4.jpg          asymptote: mc011-5.jpg
c.
vertices: mc011-6.jpg          asymptote: mc011-7.jpg
d.
vertices: mc011-8.jpg          asymptote: mc011-9.jpg
e.
vertices: mc011-10.jpg          asymptote: mc011-11.jpg
 

 12. 

Find the standard form of the equation of the hyperbola with the given characteristics.
vertices: mc012-1.jpg          foci: mc012-2.jpg
a.
mc012-3.jpg
b.
mc012-4.jpg
c.
mc012-5.jpg
d.
mc012-6.jpg
e.
mc012-7.jpg
 

 13. 

Using following result find a set of parametric equation of conic.

Circle: mc013-1.jpg, mc013-2.jpg

Circle: center: mc013-3.jpg; radius: mc013-4.jpg
a.
mc013-5.jpg, mc013-6.jpg
b.
mc013-7.jpg, mc013-8.jpg
c.
mc013-9.jpg, mc013-10.jpg
d.
mc013-11.jpg, mc013-12.jpg
e.
mc013-13.jpg, mc013-14.jpg
 

 14. 

Using following result find a set of parametric equation of conic.

Hyperbola: mc014-1.jpg, mc014-2.jpg

Hyperbola: vertices: mc014-3.jpg; foci: mc014-4.jpg
a.
mc014-5.jpgmc014-6.jpgmc014-7.jpg, mc014-8.jpg
b.
mc014-9.jpg, mc014-10.jpgmc014-11.jpgmc014-12.jpg
c.
mc014-13.jpg, mc014-14.jpg
d.
mc014-15.jpgmc014-16.jpgmc014-17.jpg, mc014-18.jpg
e.
mc014-19.jpg, mc014-20.jpg
 

 15. 

Select the parametric equations matching with the following graph.

mc015-1.jpg
a.
Involute of circle: mc015-2.jpg, mc015-3.jpg
b.
Involute of circle: mc015-4.jpg, mc015-5.jpg
c.
Involute of circle: mc015-6.jpg, mc015-7.jpg
d.
Involute of circle: mc015-8.jpg, mc015-9.jpg
e.
Involute of circle: mc015-10.jpg, mc015-11.jpg
 

 16. 

A point (a,b) shown in  below graph in polar coordinates is given. Convert the point to rectangular coordinates.

mc016-1.jpg

mc016-2.jpg
a.
mc016-3.jpg
b.
mc016-4.jpg
c.
mc016-5.jpg
d.
mc016-6.jpg
e.
mc016-7.jpg
 

 17. 

Convert the polar equation to rectangular form.

mc017-1.jpg
a.
mc017-2.jpg
b.
mc017-3.jpg
c.
mc017-4.jpg
d.
mc017-5.jpg
e.
mc017-6.jpg
 

 18. 

Identify the conic and select its correct graph.

mc018-1.jpg
a.
mc018-2.jpg Ellipse

mc018-3.jpg

d.
mc018-8.jpg Ellipse

mc018-9.jpg

b.
mc018-4.jpg Ellipse

mc018-5.jpg

e.
mc018-10.jpg Ellipse

mc018-11.jpg
c.
mc018-6.jpg Ellipse

mc018-7.jpg

 

 19. 

Identify the conic and select its correct graph.

mc019-1.jpg
a.
mc019-2.jpg Ellipse

mc019-3.jpg

d.
mc019-8.jpg Ellipse

mc019-9.jpg
b.
mc019-4.jpg Ellipse

mc019-5.jpg
e.
mc019-10.jpg Ellipse

mc019-11.jpg
c.
mc019-6.jpg Ellipse

mc019-7.jpg
 

 20. 

Find a polar equation of the conic with its focus at the pole.

mc020-1.jpg
a.
mc020-2.jpg   
b.
mc020-3.jpg
c.
mc020-4.jpg
d.
mc020-5.jpg
e.
mc020-6.jpg
 



 
Check Your Work     Start Over