Sales Price of Homes The table shows the median sales price S (in thousands of dollars) of existing one-family homes in the United States from 1990 to 2013. The data can be approximated by the model
$S=\frac{0.2716 t^{2}-10.1895 t+98.2468}{-8.5474 t^{3}+0.0061 t^{2}-0.1369 t+1}, \quad 0 \leq t \leq 23$
where t represents the year, with $t=0$ corresponding to 1990. (Data Source: National Association of Realtors)

	Year	Median sales price, S
	1990	97.3
	1991	102.7
	1992	105.5
	1993	109.1
	1994	113.5
	1995	117.0
	1996	122.6
	1997	129.0
	1998	136.0
	1999	141.2
	2000	147.3
	2001	156.6

	Year	Median sales price, S
	2002	167.6
	2003	180.2
	2004	195.2
	2005	219.0
	2006	221.9
	2007	217.9
	2008	196.6
	2009	172.5
	2010	172.9
	2011	166.1
	2012	176.8
	2013	197.1

(a) Use a graphing utility to create a scatter plot of the data.
(b) Use the model to approximate the median sales prices for each year from 1990 through 2013.
(c) Compare the estimated to the actual data to determine whether the model is a good fit for the data. Explain.
(d) Examine the scatter plot from part (a). Is there another type of model that fits the data? Explain your reasoning.
(e) Use the cubic regression feature of a graphing utility to find a model for the data..
(f) Use a graphing utility to plot the data and graph the given rational model and the model that you found in part (e) in the same viewing window.
(g) Use each model to predict the median sales price of an existing one-family home in 2020. Which model should be used to predict future values? Explain your reasoning.

