
G1

Introduction
In this appendix, you will study a form of mathematical proof called mathematical 
induction. To see the logical need for mathematical induction, take another look at the 
problem discussed in Section 8.2, Example 5.

S1 = 1 = 12

S2 = 1 + 3 = 22

S3 = 1 + 3 + 5 = 32

S4 = 1 + 3 + 5 + 7 = 42

S5 = 1 + 3 + 5 + 7 + 9 = 52

Judging from the pattern formed by these first five sums, it appears that the sum of the 
first n odd integers is

Sn = 1 + 3 + 5 + 7 + 9 + .  .  . + (2n − 1) = n2.

Although this particular formula is valid, it is important for you to see that recognizing 
a pattern and then simply jumping to the conclusion that the pattern must be true for all 
values of n is not a logically valid method of proof. There are many examples in which 
a pattern appears to be developing for small values of n but then fails at some point. 
One of the most famous cases of this is the conjecture by the French mathematician 
Pierre de Fermat (1601–1665), who speculated that all numbers of the form

Fn = 22n + 1,  n = 0, 1, 2, .  .  .

are prime. For n = 0, 1, 2, 3, and 4, the conjecture is true.

F0 = 3

F1 = 5

F2 = 17

F3 = 257

F4 = 65,537

The size of the next Fermat number (F5 = 4,294,967,297) is so great that it was
difficult for Fermat to determine whether or not it was prime. However, another  
well-known mathematician, Leonhard Euler (1707–1783), later found a factorization

 F5 = 4,294,967,297

 = 641(6,700,417)

which proved that F5 is not prime and therefore Fermat’s conjecture was false.
Just because a rule, pattern, or formula seems to work for several values of n, 

you cannot simply decide that it is valid for all values of n without going through a 
legitimate proof. Mathematical induction is one method of proof.

What you should learn
	� Use mathematical induction to 

prove statements involving a 
positive integer n.

	� Find the sums of powers of 
integers.

	� Find finite differences of 
sequences.

Why you should learn it
Finite differences can be used to 
determine what type of model can 
be used to represent a sequence. For 
instance, in Exercise 59 on page G8, 
you will use finite differences to find 
a model that represents the number 
of sides of the nth Koch snowflake.

Appendix G:  Mathematical Induction
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The Principle of Mathematical Induction

Let Pn be a statement involving the positive integer n. If

1.  P1 is true, and

2.  the truth of Pk implies the truth of Pk+1 for every positive integer k,

then Pn must be true for all positive integers n.

To apply the Principle of Mathematical Induction, you need to be able to determine 
the statement Pk+1 for a given statement Pk. To determine Pk+1, substitute k + 1 for k 
in the statement Pk.

EXAMPLE 1   A Preliminary Example

Find Pk+1 for each Pk.

a.	 Pk : Sk =
k2(k + 1)2

4

b.	 Pk : Sk = 1 + 5 + 9 + .  .  . + [4(k − 1) − 3] + (4k − 3)
c.	 Pk : k + 3 < 5k2

d.	 Pk : 3
k ≥ 2k + 1

Solution

a.	  Pk+1 : Sk+1 =
(k + 1)2(k + 1 + 1)2

4
	 Replace k by k + 1.

	  =
(k + 1)2(k + 2)2

4
	 Simplify.

b.	  Pk+1 : Sk+1 = 1 + 5 + 9 + .  .  . + {4[(k + 1) − 1] − 3} + [4(k + 1) − 3]
	  = 1 + 5 + 9 + .  .  . + (4k − 3) + (4k + 1)
c.	  Pk+1 : (k + 1) + 3 < 5(k + 1)2

	  k + 4 < 5(k2 + 2k + 1)
d.	  Pk+1 : 3

k+1 ≥ 2(k + 1) + 1

	  3k+1 ≥ 2k + 3 	

A well-known illustration used to explain why the Principle of Mathematical 
Induction works is the unending line of dominoes represented by Figure G.1. When 
the line actually contains infinitely many dominoes, it is clear that you could not knock 
down the entire line by knocking down only one domino at a time. However, suppose 
it were true that each domino would knock down the next one as it fell. Then you could 
knock them all down simply by pushing the first one and starting a chain reaction. 
Mathematical induction works in the same way. If the truth of Pk implies the truth of 
Pk+1 and if P1 is true, then the chain reaction proceeds as follows: P1 implies P2, P2 
implies P3, P3 implies P4, and so on.

Remark
It is important to recognize 
that in order to prove a 
statement by induction, both 
parts of the Principle of 
Mathematical Induction are 
necessary.

Figure G.1
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When using mathematical induction to prove a summation formula (such as the one 
in Example 2), it is helpful to think of Sk+1 as

Sk+1 = Sk + ak+1

where ak+1 is the (k + 1)th term of the original sum.

EXAMPLE 2   Using Mathematical Induction

Use mathematical induction to prove the formula

Sn = 1 + 3 + 5 + 7 + .  .  . + (2n − 1) = n2

for all integers n ≥ 1.

Solution
Mathematical induction consists of two distinct parts. First, you must show that the 
formula is true when n = 1.

1.  When n = 1, the formula is valid because

	 S1 = 1 = 12.

The second part of mathematical induction has two steps. The first step is to assume 
that the formula is valid for some integer k. The second step is to use this assumption 
to prove that the formula is valid for the next integer, k + 1.

2.  Assuming that the formula

	 Sk = 1 + 3 + 5 + 7 + .  .  . + (2k − 1) = k2

	 is true, you must show that the formula Sk+1 = (k + 1)2 is true.

	  Sk+1 = 1 + 3 + 5 + 7 + .  .  . + (2k − 1) + [2(k + 1) − 1]

	  = [1 + 3 + 5 + 7 + .  .  . + (2k − 1)] + (2k + 2 − 1)

	  = Sk + (2k + 1)	 Group terms to form Sk. 

	  = k2 + 2k + 1	 Replace Sk by k2. 

	  = (k + 1)2

Combining the results of parts (1) and (2), you can conclude by mathematical induction 
that the formula is valid for all integers n ≥ 1.	

It occasionally happens that a statement involving natural numbers is not true for 
the first k − 1 positive integers but is true for all values of n ≥ k. In these instances, 
you use a slight variation of the Principle of Mathematical Induction in which you 
verify Pk rather than P1. This variation is called the Extended Principle of Mathematical 
Induction. To see the validity of this principle, note from Figure G.1 that all but the first 
k − 1 dominoes can be knocked down by knocking over the kth domino. This suggests 
that you can prove a statement Pn to be true for n ≥ k by showing that Pk is true and 
that Pk implies Pk+1. In Exercises 29 –34 in this appendix, you are asked to apply this 
extension of mathematical induction.
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EXAMPLE 3   Using Mathematical Induction

Use mathematical induction to prove the formula

Sn = 12 + 22 + 32 + 42 + .  .  . + n2 =
n(n + 1)(2n + 1)

6

for all integers n ≥ 1.

Solution
1.  When n = 1, the formula is valid because

	 S1 = 12 =
1(1 + 1)(2 ∙ 1 + 1)

6
=

1(2)(3)
6

.

2.  Assuming that

	 Sk = 12 + 22 + 32 + 42 + .  .  . + k2 =
k(k + 1)(2k + 1)

6
.

	 you must show that

	 Sk+1 =
(k + 1)(k + 1 + 1)[2(k + 1) + 1]

6
=

(k + 1)(k + 2)(2k + 3)
6

.

	 To do this, write the following.

 Sk+1 = Sk + ak+1

 = (12 + 22 + 32 + 42 + .  .  . + k2) + (k + 1)2	 Substitute for Sk. 

 =
k(k + 1)(2k + 1)

6
+ (k + 1)2 	 By assumption

 =
k(k + 1)(2k + 1) + 6(k + 1)2

6
	 Combine fractions.

 =
(k + 1)[k(2k + 1) + 6(k + 1)]

6
	 Factor.

 =
(k + 1)(2k2 + 7k + 6)

6
	 Simplify.

 =
(k + 1)(k + 2)(2k + 3)

6
	 Sk implies Sk+1. 

Combining the results of parts (1) and (2), you can conclude by mathematical induction 
that the formula is valid for all integers n ≥ 1.	

When proving a formula by mathematical induction, the only statement that you 
need to verify is P1. As a check, it is a good idea to try verifying some of the other 
statements. For instance, in Example 3, try verifying P2 and P3.
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EXAMPLE 4   Proving an Inequality

Prove that n < 2n for all integers n ≥ 1.

Solution
1.  For n = 1 and n = 2, the formula is true because

1 < 21  and  2 < 22.

2.  Assuming that

k < 2k

	 you need to show that k + 1 < 2k+1. Multiply each side of k < 2k by 2.

2(k) < 2(2k) = 2k+1

	 Because k + 1 < k + k = 2k for all k > 1, it follows that

k + 1 < 2k < 2k+1

	 or

k + 1 < 2k+1.

Combining the results of parts (1) and (2), you can conclude by mathematical induction 
that n < 2n for all integers n ≥ 1.	

Sums of Powers of Integers
The formula in Example 3 is one of a collection of useful summation formulas. This 
and other formulas dealing with the sums of various powers of the first n positive 
integers are summarized below.

Sums of Powers of Integers

1.  ∑
n

i=1
i = 1 + 2 + 3 + 4 + .  .  . + n =

n(n + 1)
2

2.  ∑
n

i=1
i2 = 12 + 22 + 32 + 42 + .  .  . + n2 =

n(n + 1)(2n + 1)
6

3.  ∑
n

i=1
i3 = 13 + 23 + 33 + 43 + .  .  . + n3 =

n2(n + 1)2
4

4.  ∑
n

i=1
i4 = 14 + 24 + 34 + 44 + .  .  . + n4 =

n(n + 1)(2n + 1)(3n2 + 3n − 1)
30

5.  ∑
n

i=1
i5 = 15 + 25 + 35 + 45 + .  .  . + n5 =

n2(n + 1)2(2n2 + 2n − 1)
12

Each of these formulas for sums can be proven by mathematical induction. (See 
Exercises 17–20 in this appendix.)
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Finite Differences
The first differences of a sequence are found by subtracting consecutive terms. The 
second differences are found by subtracting consecutive first differences. The first and 
second differences of the sequence 3, 5, 8, 12, 17, 23, .  .  .  are as follows.

	 n:	 1		  2		  3		  4		  5		  6

	 an:	 3		  5		  8		  12		  17		  23

	 First differences:		  2		  3		  4		  5		  6

	Second differences:			   1		  1		  1		  1

For this sequence, the second differences are all the same. When this happens, and the 
second differences are nonzero, the sequence has a perfect quadratic model. When the 
first differences are all the same nonzero number, the sequence has a perfect linear 
model—that is, it is arithmetic.

EXAMPLE 5   Finding a Quadratic Model

Find the quadratic model for the sequence 3, 5, 8, 12, 17, 23, .  .  . .

Solution
You know from the second differences shown above that the model is quadratic and 
has the form

an = an2 + bn + c.

By substituting 1, 2, and 3 for n, you can obtain a system of three linear equations in 
three variables.

a1 = a(1)2 + b(1) + c = 3	 Substitute 1 for n.

a2 = a(2)2 + b(2) + c = 5	 Substitute 2 for n.

a3 = a(3)2 + b(3) + c = 8	 Substitute 3 for n.

You now have a system of three equations in a, b, and c.

{ a +
4a +
9a +

b +
2b +
3b +

c =
c =
c =

3
5
8
	

Equation 1

Equation 2

Equation 3

Solving this system of equations using the techniques discussed in Chapter 7, you can 
find the solution to be a = 1

2, b = 1
2, and c = 2. So, the quadratic model is

an =
1
2n2 + 1

2n + 2.

Check the values of a1, a2, and a3 as follows.

Check

a1 =
1
2(1)2 +

1
2(1) + 2 = 3	 Solution checks.  ✓

a2 =
1
2(2)2 +

1
2(2) + 2 = 5	 Solution checks.  ✓

a3 =
1
2(3)2 +

1
2(3) + 2 = 8	 Solution checks.  ✓	
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Finding Pk+1  In Exercises 5–10, find Pk+1 for the  
given Pk.

  5.	 Pk =
5

k(k + 1)	   6.  Pk =
4

(k + 2)(k + 3)

  7.	 Pk =
2k

(k + 1)!	   8.  Pk =
2k−1

k!

  9.	 Pk = 1 + 6 + 11 + .  .  . + [5(k − 1) − 4] + (5k − 4)
10.	 Pk = 7 + 13 + 19 + . . . + [6(k − 1) + 1] + (6k + 1)

Using Mathematical Induction  In Exercises 11–24, use 
mathematical induction to prove the formula for all 
positive integers n.

11.	 2 + 4 + 6 + 8 + .  .  . + 2n = n(n + 1)
12.	 3 + 11 + 19 + 27 + .  .  . + (8n − 5) = n(4n − 1)

13.	 3 + 8 + 13 + 18 + .  .  . + (5n − 2) = n
2
(5n + 1)

14.	 1 + 4 + 7 + 10 + .  .  . + (3n − 2) = n
2
(3n − 1)

15.	 1 + 2 + 22 + 23 + .  .  . + 2n−1 = 2n − 1

16.	 2(1 + 3 + 32 + 33 + .  .  . + 3n−1) = 3n − 1

17.	 ∑
n

i=1
i =

n(n + 1)
2

18.	 ∑
n

i=1
i3 =

n2(n + 1)2
4

19.	 ∑
n

i=1
i4 =

n(n + 1)(2n + 1)(3n2 + 3n − 1)
30

20.	 ∑
n

i=1
i5 =

n2(n + 1)2(2n2 + 2n − 1)
12

21.	 ∑
n

i=1
i(i + 1) = n(n + 1)(n + 2)

3

22.	 ∑
n

i=1

1
(2i − 1)(2i + 1) =

n
2n + 1

23.	 ∑
n

i=1
 

1
i(i + 1) =

n
n + 1

24.	 ∑
n

i=1
 

1
i(i + 1)(i + 2) =

n(n + 3)
4(n + 1)(n + 2)

Finding Sums of Powers of Integers  In Exercises 25–28, 
find the sum using the formulas for the sums of powers 
of integers.

25.	 ∑
50

n=1
n3	 26.  ∑

10

n=1
n4

27.	 ∑
12

n=1
(n2 − n)	 28.  ∑

40

n=1
(n3 − n)

Proving an Inequality by Mathematical Induction  In 
Exercises 29– 34, prove the inequality for the indicated 
integer values of n.

29.	 n! > 2n,  n ≥ 4

30.	 (43)
n

> n,  n ≥ 7

31.	
1
√1

+
1
√2

+
1
√3

+ .  .  . +
1
√n

> √n,  n ≥ 2

32.	 (xy)
n+1

< (xy)
n

,  n ≥ 1 and 0 < x < y

33.	 (1 + a)n ≥ na,  n ≥ 1 and a > 1

34.	 3n > n 2n,  n ≥ 1

Using Mathematical Induction  In Exercises 35– 46, use 
mathematical induction to prove the property for all 
positive integers 

35.	 (ab)n = anbn

36.	 (ab)
n

=
an

bn

Vocabulary and Concept Check
In Exercises 1– 4, fill in the blank.

  1.	� The first step in proving a formula by _______ is to show that the formula is true 
when n = 1.

  2.	� The _______ differences of a sequence are found by subtracting consecutive terms.

  3.	� A sequence is an _______ sequence when the first differences are all the same 
nonzero number.

  4.	� When the _______ differences of a sequence are all the same nonzero number, 
then the sequence has a perfect quadratic model.

Procedures and Problem Solving

G  Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
For instructions on how to use a graphing utility, see Appendix A.
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37.	 If x1 ≠ 0, x2 ≠ 0, .  .  . , xn ≠ 0, then

	 (x1x2x3 .  .  . xn)−1 = x1
−1x2

−1x3
−1.  .  . xn

−1.

38.	 If x1 > 0, x2 > 0, .  .  . , xn > 0, then

	 ln(x1x2 .  .  . xn) = ln x1 + ln x2 + .  .  . + ln xn.

39.	 Generalized Distributive Law:

	 x(y1 + y2 + .  .  . + yn) = xy1 + xy2 + .  .  . + xyn

40.	� (a + bi)n and (a − bi)n are complex conjugates for all 
n ≥ 1.

41.	 A factor of (n3 + 3n2 + 2n) is 3.

42.	 A factor of (n3 + 5n + 6) is 3.

43.	 A factor of (n3 − n + 3) is 3.

44.	 A factor of (n4 − n + 4) is 2.

45.	 A factor of (22n+1 + 1) is 3.

46.	 A factor of (24n−2 + 1) is 5.

Using Finite Differences to Classify a Sequence  In 
Exercises 47– 54, write the first five terms of the sequence 
beginning with the given term. Then calculate the 
first and second differences of the sequence. Does the 
sequence have a linear model, a quadratic model, or 
neither?

47.	 a1 = 0	 48.  a1 = 2

	 an = an−1 + 3		  an = n − an−1

49.	 a1 = 3	 50.  a2 = −3

	 an = an−1 − n		  an = −2an−1

51.	 a0 = 0	 52.  a0 = 2

	 an = an−1 + n		  an = (an−1)2

53.	 a1 = 2	 54.  a1 = 0

	 an = an−1 + 2		  an = an−1 + 2n

Finding a Quadratic Model  In Exercises 55–58, find 
a quadratic model for the sequence with the indicated 
terms.

55.	 3, 3, 5, 9, 15, 23, . . .

56.	 7, 6, 7, 10, 15, 22, . . .

57.	 a0 = −3, a2 = 1, a4 = 9

58.	 a0 = 3, a2 = 0, a6 = 36

59. �   (p. G1)  A Koch snowflake 
is created by starting with an equilateral triangle with 
sides one unit in length. Then, on each side of the 
triangle, a new equilateral triangle is created on the 
middle third of that side. This process is repeated 
continuously, as shown in the figure.

	 (a)	� Determine a formula for the number of sides of the 
nth Koch snowflake. Use mathematical induction to 
prove your answer.

	 (b)	� Determine a formula for the area of the nth Koch 
snowflake. Recall that the area A of an equilateral 
triangle with side s is A = (√3�4)s2.

	 (c)	� Determine a formula for the perimeter of the nth 
Koch snowflake.

60.	 �Using Mathematical Induction  The Tower of Hanoi 
puzzle is a game in which three pegs are attached to a 
board and one of the pegs has n disks sitting on it, as 
shown in the figure. Each disk on that peg must sit on 
a larger disk. The strategy of the game is to move the 
entire pile of disks, one at a time, to another peg. At no 
time may a disk sit on a smaller disk.

	 (a)	� Find the number of moves when there are three 
disks.

	 (b)	� Find the number of moves when there are four 
disks.

	 (c)	� Use your results from parts (a) and (b) to find a 
formula for the number of moves when there are n 
disks.

	 (d)	� Use mathematical induction to prove the formula 
you found in part (c).

Conclusions
True or False?  In Exercises 61– 63, determine whether 
the statement is true or false. Justify your answer.

61.	� If the statement Pk is true and Pk implies Pk+1, then P1 
is also true.

62.	� If a sequence is arithmetic, then the first differences of 
the sequence are all zero.

63.	� A sequence with n terms has n − 1 second differences.

64.	� Think About It  What conclusion can be drawn from 
the information given about each sequence P1, P2, P3, 
.  .  . , Pn?

	 (a)  P3 is true and Pk implies Pk+1.

	 (b)  P1, P2, P3, .  .  . , P50 are all true.

	 (c) � P1, P2, and P3 are all true, but the truth of Pk does 
not imply that Pk+1 is true.

	 (d)  P2 is true and P2k implies P2k+2.
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