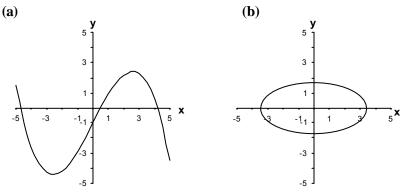
Section %) Analyzing Graphs of Functions Course Number Objective: In this lesson you learned how to analyze graphs of functions. Instructor Date Important Vocabulary Define each term or concept. Graph of a function Even function Odd function


I. The Graph of a Function (Pages 6; -72)

To find the domain of a function from its graph, ...

To find the range of a function from its graph, ...

The Vertical Line Test for functions states . . .

Example: Decide whether each graph represents y as a function of x.

What you should learn How to use the Vertical Line Test for functions II. Zeros of a Function (Page 73)

If the graph of a function of x has an x-intercept at (a, 0), then a is a ______ of the function.

The **zeros of a function** f of x are . . .

To find the zeros of a function, ...

Example: Find the zeros of the function $f(x) = 4x^2 + 19x - 5$.

III. Increasing and Decreasing Functions (Pages 74 – 75)

A function f is **increasing** on an interval if, for any x_1 and x_2 in the interval, . . .

A function f is **decreasing** on an interval if, for any x_1 and x_2 in the interval, . . .

A function f is **constant** on an interval if, for any x_1 and x_2 in the interval, . . .

A function value f(a) is called a **relative minimum** of f if . . .

A function value f(a) is called a **relative maximum** of f if . . .

The point at which a function changes from increasing to decreasing is a relative _____. The point at which a function changes from decreasing to increasing is a relative

What you should learn How to find the zeros of functions

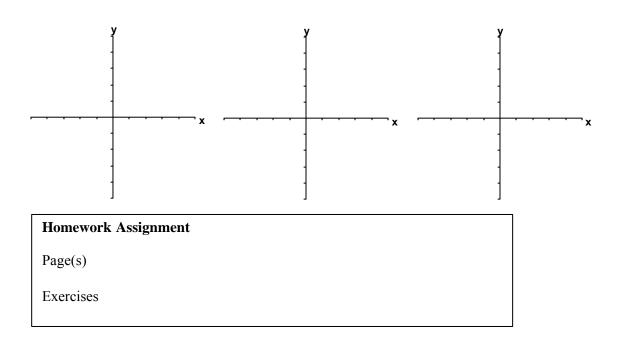
What you should learn How to determine intervals on which functions are increasing or decreasing To approximate the relative minimum or maximum of a function using a graphing utility, . . .

IV. Average Rate of Change (Page 54)

For a nonlinear graph whose slope changes at each point, the ______between any two points $(x_1, f(x_1))$ and $(x_2, f(x_2))$ is the slope of the line through the two points.

V. Even and Odd Functions (Page 55)

A function whose graph is symmetric with respect to the *y*-axis is a(n) ______ function. A function whose graph is symmetric with respect to the origin is a(n) ______ function.


Can the graph of a nonzero function be symmetric with respect to the *x*-axis?

Example: Decide whether the function $f(x) = 4x^2 - 3x + 1$ is even, odd, or neither.

What you should learn How to determine the average rate of change of a function

What you should learn How to identify even and odd functions

Additional notes

