Collaborative Project - Analytic Trigonometry

1. Show that each function at the left is equivalent to the corresponding function at the right. Then use a graphing utility to graph the function(s) at the right with the given viewing window and domain restrictions to sketch the figure described.
a. River branching into 2 streams (Viewing window: $0 \leq x \leq 3 \pi,-50 \leq y \leq 50$)

$$
f(x)=(\sin x+\cos x)(\tan x+\cot x) \rightarrow g(x)=\frac{1}{\cos x}+\frac{1}{\sin x}, \frac{\pi}{2} \leq x \leq 2 \pi
$$

b. Human finger with fingernail (Viewing window: $-3 \pi \leq x \leq 3 \pi, 0 \leq y \leq 100$)

$$
\begin{array}{ll}
f(x)=24 \sec ^{2} x-20 \tan ^{2} x & \rightarrow g(x)=\frac{4}{\cos ^{2} x}+20,-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\
r(x)=50-4 \csc \left(\frac{\pi}{2}-2 x\right) & \rightarrow s(x)=50-\frac{4}{2 \cos ^{2} x-1},-0.7 \leq x \leq 0.7
\end{array}
$$

2. The vertical position (in inches) relative to the point of equilibrium of a weight on a spring is given by $f(x)=\cos (2 x)-\sin (2 x)$, where x is the time in seconds. Solve $f(x)=1$ for $0 \leq x<2 \pi$.
3. An overhead door is to be built on the front wall of a Quonset hut. The shape of the front wall is modeled by the graph of

$$
S(x)=\cos ^{2} x-\sin ^{2} x,-\frac{\pi}{4} \leq x \leq \frac{\pi}{4} \text { (see figure). }
$$

The area of a rectangle inscribed in the graph of S is given by

$$
A(x)=2 x\left(\cos ^{2} x-\sin ^{2} x\right), 0<x<\frac{\pi}{4} .
$$

a. Rewrite the area formula using only one trigonometric function.
b. Approximate the maximum possible area of the inscribed rectangle.
c. Determine the values of x for which the area of the rectangle is greater than 0.5 square unit.
4. A line l can be drawn through two points $(x, f(x))$ and $(x+h, f(x+h))$ on the graph of $f(x)=\sin x$ (see figure).
a. The slope of line l is given by $m=\frac{f(x+h)-f(x)}{h}$. Use $f(x)=\sin x$ to write another expression for m.
b. Show that your expression in part (a) is equal to $\frac{\sin x(\cos h-1)}{h}+\frac{\cos x \sin h}{h}$.

c. Use a graphing utility to graph $y=\frac{\sin x(\cos h-1)}{h}, y=\frac{\cos x \sin h}{h}$, and $y=\cos x$ in the same viewing window for $h=1, h=0.5, h=0.1$, and $h=0.0001$.
d. Make a conjecture about the slope of the line through two points $(x, \sin x)$ and $(x+h, \sin (x+h))$ as h gets closer and closer to 0 .

