Collaborative Project - Exponential and Logarithmic Functions

1. Experiment: Newton's Law of Cooling Heat one cup of water. Place a thermometer in the water, and place the water (and thermometer) in a room or environment with a constant, unchanging temperature.
a. Record the environment temperature E below. Use the table to record the temperature of the water every 5 minutes, starting at time $t=0$.

$$
\boldsymbol{E}=_\begin{array}{|l|l|l|l|l|l|l|l|}
\hline \text { Time, } t \text { (minutes) } & 0 & 5 & 10 & 15 & 20 & 25 & 30 \\
\hline \text { Temperature, } T_{t} & & & & & & & \\
\hline
\end{array}
$$

b. Based on Newton's Law of Cooling, the temperature T of the liquid after t minutes is given by

$$
T(t)=E+\left(T_{0}-E\right) e^{-k t}
$$

where k is a constant. Substitute the values for E, T_{0}, and T_{20} from part (a) into the equation and solve for k. (Substitute T_{20} for $T(t)$.) Then repeat the process to find k when $t=5,10$, and 15 . Are the values of k reasonably close?
c. Use the values of E, T_{0}, and k from parts (a) and (b) to rewrite the expression for $T(t)$. Use the value of k you feel will give the most accurate results. Explain your choice.
d. Use the expression from part (c) to find $T(30)$. How does your answer compare to the actual temperature T_{30} ?
e. Use the expression from part (c) to predict the temperatures of the liquid when $t=35$ and $t=45$ minutes.
2. A patient is told to avoid caffeine for 8 to 12 hours before a blood test scheduled for 6 A.m. The blood test is reliable for up to 50 milligrams of caffeine in the bloodstream. The patient's body metabolizes caffeine at a rate of 13% per hour.
a. At 10 p.m., the patient drinks a cup of coffee containing 150 milligrams of caffeine. Will the patient be ready for the blood test by 6 A.M.? Explain.
b. How many milligrams of caffeine could the patient have ingested at 7 P.m. and been ready for the blood test at 6 A.m.?
3. A student comes to school with a highly contagious flu virus at a high school with 1030 students. The spread of the virus is modeled by

$$
P(t)=\frac{1030}{1+1029 e^{-k t}}
$$

where P is the total number of students infected after t days.
a. After 3 days, 121 students are infected. Complete the model $P(t)$ by solving for k.
b. School policy is to close school when 40% of the students are infected. After how many days does this occur?
4. An athlete currently completes a 5-kilometer race in 26 minutes. The goal of the athlete is to complete the 5 -kilometer race in 18 minutes. The model

$$
r(t)=26-4.9 \log _{10}(t+1), \quad 0 \leq t \leq 52
$$

describes the 5 -kilometer race times $r(t)$, in minutes, of the athlete after t weeks of training.
a. Can the athlete complete the 5 -kilometer race in 20 minutes after 9 weeks of training? Explain.
b. After how many weeks of training can the athlete achieve her goal? Round your answer to the nearest whole number.

