Topics in Analytic Geometry Answers

1. a.
$$y = -\frac{1}{12,800}x^2 + \frac{1}{2}$$

b. About 61.97 ft

- 2. About 21.91 ft
- 3. About 4.58 feet from the center on both sides; 22 ft

4. a.
$$\frac{x^2}{4} - \frac{7y^2}{300} = 1$$

b. 4.4 in.

5. a. *r* = 20

- **b.** $\left(20, \frac{3\pi}{4}\right)$; 20 represents the distance of the passenger from the center, and $\frac{3\pi}{4}$ represents the angle to which the car has rotated.
- c. $\left(-\frac{20\sqrt{2}}{2}, \frac{20\sqrt{2}}{2}\right)$; The car is about 14.14 feet to the left of the center and about 14.14 feet above the center.
- 6. a. 25 ft

b.
$$\frac{\pi}{10}, \frac{\pi}{2}, \frac{9\pi}{10}, \frac{13\pi}{10}, \text{ and } \frac{17\pi}{10}$$

$$y = (65 \sin 23)t - 16t^2$$

b. 1.587 sec

c. About 94.95 feet down the field (or between the opposite "23-yard" and "24-yard" lines)