Meteorology The table shows the mean monthly high temperature T (in degrees Fahrenheit) and mean monthly precipitation P (in inches) for Cheyenne, Wyoming, where t is the month, with t = 1 corresponding to January. (*Source:* NOAA)

	Month, t	Т	Р
Is.com	1	39.5	0.33
	2	40.5	0.47
	3	47.5	1.05
at culu	4	54.9	1.78
eet : ecal	5	64.7	2.34
udsh mPr	6	75.3	2.34
prea	7	83.4	2.19
SL	8	81.2	1.95
	9	71.8	1.48
	10	58.8	0.93
	11	46.5	0.59
	12	38.2	0.49

- (a) Use a graphing utility to plot both sets of data in separate viewing windows.
- (b) Does each set of data appear to fit a sine curve? Explain your reasoning.
- (c) Use the *sine regression* feature of the graphing utility to find sine models to fit each set of data.
- (d) Use the graphing utility to graph each model from part (c) with the corresponding original data. How well does each model fit the original data?
- (e) What is the amplitude of each model? Interpret the meaning of the amplitude of each model in the context of the problem.
- (f) At what values of *t* does each sine model reach its maximum and minimum? What do these values represent in the context of the problem?
- (g) What is the period of each model? Are the periods what you expected? Explain your reasoning.