DAT	Year	Number, <i>a_n</i>
	2001	86,107
в	2002	83,992
Spreadsheet at LarsonPrecalculus.com	2003	82,244
	2004	79,949
	2005	77,835
	2006	75,401
prea arso	2007	74,056
S L	2008	72,870
	2009	72,397
	2010	70,427
	2011	68,755
	2012	66,749
	2013	63,510
	2014	61,365
	2015	58,791
	2016	56,007
	2017	54,560

Public Safety The table shows the numbers a_n of structurally deficient bridges in the United States from 2001 though 2017. (*Source:* Bureau of Transportation)

- (a) Use a graphing utility to plot the data. Let *n* represent the year, with n = 1 corresponding to 2001.
- (b) Use the *regression* feature of the graphing utility to find an arithmetic sequence (linear model) for the data.
- (c) Create a table that compares the actual data values with the values given by the arithmetic sequence.
- (d) Does it appear that the model is a good fit for the data? Explain your reasoning.
- (e) Use the sequence from part (b) to estimate the number of structurally deficient bridges in the United States in 2018.
- (f) Use the Internet to find the actual number of structurally deficient bridges in the United States in 2018, and compare this value with your estimate from part (e).