Project: Veterinarians The table shows the numbers of veterinarians employed in the United States from 2003 through 2017. (Source: U.S. Bureau of Labor Statistics)

DATA	Year	Veterinarians Employed
E	2003	43,890
¢	2004	46,090
-	2005	47,870
ఫ్ర్ర	2006	49,750
気	2007	50,790
边	2008	53,110
	2009	54,130
	2010	54,480
	2011	55,410
	2012	56,020
	2013	59,230
	2014	62,470
	2015	65,650
	2016	67,650
	2017	69,370

(a) Use the regression feature of a graphing utility to find a cubic model for the data. Let t represent the year, with $t=3$ corresponding to 2003 .
(b) Use the graphing utility to graph the model found in part (a) and the original data in the same viewing window. How well does the model fit the data? Explain.
(c) Estimate the slope of the graph when $t=5, t=9, t=10$, and $t=13$. Interpret your answers in the context of the problem.
(d) Use the graphing utility to graph the tangent lines to the model when $t=5, t=9, t=10$, and $t=13$.
(e) Compare the slopes given by the graphing utility with your estimates in part (c).

