Project: Bachelor's Degrees The table shows the numbers B (in thousands) of bachelor's degrees earned by women in the United States from 2002 through 2013. A linear model for the data is

$$B = 26.9t + 689, \quad 2 \le t \le 13$$

where t represents the year, with t = 2 corresponding to 2002. (Source: National Center for Education Statistics)

DATA	Year	Bachelor's degrees, B
n	2002	742
COI	2003	776
snlı	2004	804
alcı	2005	826
rec	2006	855
onF	2007	875
ars	2008	895
at I	2009	916
eet	2010	943
dsh	2011	982
Spreadsheet at LarsonPrecalculus.com	2012	1026
S	2013	1053

- (a) Use a graphing utility to plot the data and graph the model in the same viewing window.
- (b) Use the model to approximate the number of bachelor's degrees earned by women for each year from 2002 through 2013.
- (c) Compare the estimates to the actual data. Is the model a good fit for the data? Explain.
- (d) What are the slope and *y*-intercept of the model? Interpret their meaning in the context of the problem.
- (e) Use the model to predict the number of bachelor's degrees earned by women in 2020.