Project: Height of a Basketball A basketball is dropped from a height of about 5.25 feet. The height of the basketball is recorded 23 times at intervals of about 0.02 second. *The results are shown in the table.

DATA	Time, x	Height, y
Spreadsheet at LarsonPrecalculus.com	0.0 0.02 0.04 0.06 0.08 0.099996 0.119996 0.139992	5.23594 5.20353 5.16031 5.09910 5.02707 4.95146 4.85062 4.74979
Spreadsheet a	0.159988 0.179988 0.199984 0.219984 0.23998 0.25993 0.27998 0.299976	4.63096 4.50132 4.35728 4.19523 4.02958 3.84593 3.65507 3.44981
	0.319972 0.339961 0.359961 0.379951 0.399941 0.419941 0.439941	3.23375 3.01048 2.76921 2.52074 2.25786 1.98058 1.63488

- (a) Use a graphing utility to plot the data.
- (b) Describe the trend in the data.
- (c) Use the *regression* feature of the graphing utility to find a quadratic model for the data.
- (d) Use a graphing utility to graph the model from part (c) and the original data in the same viewing window. How well does the model fit the data?
- (e) Describe how to predict the time when the basketball will hit the ground. Then determine this time.
- * Data were collected with a Texas Instrument CBL (Calculator-Based Laboratory) System.