Project: Fraud and Identity Theft The data below, given in ordered pairs (x, y), show the number x (in thousands) of fraud complaints and the number y (in thousands) of identity theft victims by state in 2014. (*Source: U.S. Federal Trade Commission*) (*Spreadsheet at LarsonPrecalculus.com*)

ATA	AT (27 0 2 0)	Π (61.0, 12.2)	NC(505,72)	DI(6207)
JAIA	AL $(27.6, 5.6)$	IL(01.0, 12.5)	NC(30.3, 7.3)	KI(0.2, 0.7)
	AK (3.0, 0.5)	IN (30.7, 4.5)	ND (2.5, 0.3)	SC (25.8, 3.5)
	AR (13.8, 2.5)	KS (12.6, 1.9)	NE (7.8, 0.9)	SD (3.0, 0.3)
	AZ (37.8, 6.5)	KY (19.9, 2.4)	NH (7.5, 0.7)	TN (37.3, 5.0)
	CA (250.1, 39.0)	LA (25.1, 3.4)	NJ (53.5, 7.1)	TX (174.5, 25.8)
	CO (32.1, 4.6)	MA (37.4, 5.1)	NM (10.6, 1.6)	UT (11.5, 1.6)
	CT (18.3, 3.1)	MD (40.4, 5.7)	NV (22.0, 2.8)	VA (49.5, 5.9)
	DE (7.2, 0.7)	ME (5.9, 0.7)	NY (101.5, 16.0)	VT (2.4, 0.4)
	FL (200.4, 37.1)	MI (74.2, 10.3)	OH (58.7, 9.2)	WA (36.1, 10.9)
	GA (78.5, 11.4)	MN (23.1, 3.2)	OK (16.9, 2.7)	WI (24.3, 4.3)
	HI (6.0, 0.6)	MO (31.3, 7.2)	OR (20.1, 4.9)	WV (8.6, 1.1)
	IA (11.4, 1.5)	MS (13.3, 2.4)	PA (69.7, 10.4)	WY (3.0, 0.3)
	ID (7.5, 1.0)	MT (4.6, 0.6)		

- (a) Use a graphing utility to plot the data. Can the data be approximated by a linear model? Explain your reasoning.
- (b) Use the *regression* feature of the graphing utility to find a linear model for the data.
- (c) Use the graphing utility to graph the model from part (b) and the original data in the same viewing window.
- (d) Interpret the graph in part (c). Use the graph to identify any states that appear to differ substantially from most of the others.
- (e) Interpret the slope of the model in the context of the problem.