Project: Meteorology The table shows the mean monthly temperature T (in degrees Fahrenheit) and the mean monthly precipitation P (in inches) for Honolulu, Hawaii, where t is the month, with t=1 corresponding to January. (Source: National Climatic Data Center)

DATA	Month, t	T	P
m	1	73.0	2.73
Spreadsheet at LarsonPrecalculus.com	2	73.0	2.35
lculı	3	74.3	1.89
reca	4	75.6	1.11
onP	5	77.2	0.78
Lars	6	79.5	0.43
t at	7	80.8	0.50
shee	8	81.8	0.46
ead	9	81.5	0.74
Spi	10	80.2	2.18
	11	77.7	2.27
	12	74.8	2.85

- (a) Use a graphing utility to plot both sets of data in separate viewing windows.
- (b) Does each set of data appear to fit a sine curve? Explain.
- (c) Use the *regression* feature of the graphing utility to find a sine model for each set of data.
- (d) Use the graphing utility to graph each model from part (c) with the original data. How well does each model fit the original data?
- (e) What is the period of each model? Are the periods what you expected? Explain.
- (f) What is the amplitude of each model? Interpret the meaning of the amplitude of each model in the context of the problem.
- (g) At what values of *t* does each sine model reach its maximum and minimum? What do these values represent in the context of the problem?