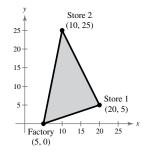
Collaborative Project — Matrices and Determinants

- 1. A toy company borrows a total of \$155,000 in three loans at simple annual interest to develop three new toys. The amount borrowed for toy A is twice the amount borrowed for toy B. The sum of the amounts borrowed for toy A and toy B is \$115,000 greater than the amount borrowed for toy C. The interest rate on the loan for toy B is 0.5% greater than that for toy A. The interest rate on the loan for toy C is 1.5% greater than that for toy A. The total annual interest for the three loans is \$10,212.50
 - **a.** Set up a system of linear equations to determine the amounts borrowed for toy A, toy B, and toy C. Use matrices to solve the system by Gaussian elimination with back-substitution
 - **b.** Set up a system of linear equations to determine the interest rates for the amounts borrowed for toy A, toy B, and toy C. Use matrices to solve the system by Gauss-Jordan elimination.
- 2. The toy company manufactures 5 different action figures that are sold in two stores. Matrix P below shows the wholesale and retail price of each action figure and matrix I shows the inventory of each action figure that each store keeps on hand.

	Pric	e									
1											
Wholesale Retail						Action figure					
	\$2.50	\$10.00	A`					~	-		
	\$3.00	\$11.00	В			А Г14	В 10	C	D		
P =	\$4.00	\$14.00	С	Action figure		$I = \begin{bmatrix} 14 \\ 12 \end{bmatrix}$	10	0	3	$\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ Store	
	\$6.00	\$17.00	D	inguie		I [13	16	3	1	0] 2)	
	\$8.50	\$20.00	E,	J							


a. Find *IP* and interpret the result.

- ·

- **b.** Each store doubles its inventory. Perform a matrix operation on *I* to show the result of this.
- **3.** The table shows the numbers of dolls X, Y, and Z sold each month and the total sales for the months of September, October, and November. Use Cramer's Rule to solve the resulting system of equations. Interpret your results.

	Х	Y	Z	Total Sales
September	30	70	20	\$5550
October	60	78	91	\$13,010
November	52	110	45	\$10,050

- **4.** The vertices of the triangle shown below represent the locations of the toy company's factory and its two outlet stores.
 - **a.** Find the area of the triangular region.
 - **b.** Find the equation of the line passing through the points representing Store 1 and Store 2.

5. The company's management team encodes the names of employees when using email to discuss sensitive information. Each member of the management team has a computer program that uses the matrix A to encode row matrices or the matrix A^{-1} to decode row matrices, where

 $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{bmatrix}.$

a. Find the matrix A^{-1} . Then use matrix A^{-1} to decode the names in the following message.

PROMOTIONS RECOMMENDED FOR

[127 163 40][88 125 74][3 1 29][64 105 109][20 48 92]

[58 81 43][44 77 93][25 42 48][92 137 102][89 137 117]

b. Use matrix *A* to encode the names in the following message.

PLEASE REVIEW PENSION PACKAGE FOR

Stephany Kelley

Ramone Whitehead