# Extension

## **Applications of Matrices and Determinants**

The vertices (0, 0), (a, 0), (0, b), and (a, b) of the square shown in Figure 1.1 can be represented by the column matrices

$$\begin{bmatrix} 0\\0 \end{bmatrix}$$
,  $\begin{bmatrix} a\\0 \end{bmatrix}$ ,  $\begin{bmatrix} 0\\b \end{bmatrix}$ , and  $\begin{bmatrix} a\\b \end{bmatrix}$ .

To find the image of a square after a transformation, you multiply each vertex by one of the matrices below.

### Matrices for Transformation







## EXAMPLE 1

### Transforming a Square

Find the image of the square with the vertices (0, 0), (2, 0), (0, 2), and (2, 2) after a reflection in the *y*-axis. Then sketch the square and its image.

#### Solution

Write the vertices (0, 0), (2, 0), (0, 2), and (2, 2) as the column matrices

 $\begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 2\\0 \end{bmatrix}, \begin{bmatrix} 0\\2 \end{bmatrix}, \text{ and } \begin{bmatrix} 2\\2 \end{bmatrix}.$ 

Then multiply each vertex by the transformation matrix

| $\begin{bmatrix} -1\\ 0 \end{bmatrix}$ | $\begin{bmatrix} 0\\1 \end{bmatrix}$ .                                                                       |                                        |                                                                                                                       |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| $\begin{bmatrix} -1\\ 0 \end{bmatrix}$ | $\begin{bmatrix} 0\\1 \end{bmatrix} \begin{bmatrix} 0\\0 \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix}$ | $\begin{bmatrix} -1\\ 0 \end{bmatrix}$ | $ \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \end{bmatrix} $ |
| $\begin{bmatrix} -1\\ 0 \end{bmatrix}$ | $\begin{bmatrix} 0\\1 \end{bmatrix} \begin{bmatrix} 0\\2 \end{bmatrix} = \begin{bmatrix} 0\\2 \end{bmatrix}$ | $\begin{bmatrix} -1\\ 0 \end{bmatrix}$ | $ \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \end{bmatrix} $ |



So, the vertices of the image are (0, 0), (-2, 0), (0, 2), and (-2, 2). A sketch of the square and its image is shown in Figure 1.2.

You can find the area of a parallelogram using the determinant of a  $2 \times 2$  matrix.

Area of a Parallelogram The area of a parallelogram with vertices (0, 0), (a, b), (c, d), and (a + c, b + d) is Area =  $|\det(A)|$   $|\det(A)|$  is the absolute value of the determinant. where  $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$ 

#### EXAMPLE 2

Finding the Area of a Parallelogram





#### Solution

Let (a, b) = (2, 0), (c, d) = (1, 3), and (a + c, b + d) = (3, 3). Then, evaluate the determinant.

$$\det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} 2 & 0 \\ 1 & 3 \end{vmatrix} = (2)(3) - (1)(0) = 6$$

The absolute value of the determinant is the area of the parallelogram.

Area =  $|\det(A)| = |6| = 6$  square units

### **Exercises**

**Transforming a Square** In Exercises 1–4, find the image of the square with the given vertices after the given transformation. Then sketch the square and its image.

- **1.** (0, 0), (0, 3), (3, 0), (3, 3); horizontal stretch, k = 2
- **2.** (1, 2), (3, 2), (1, 4), (3, 4); reflection in the *x*-axis
- **3.** (4, 3), (5, 3), (4, 4), (5, 4); reflection in the *y*-axis
- **4.** (1, 1), (3, 2), (0, 3), (2, 4); vertical shrink,  $k = \frac{1}{2}$

Finding the Area of a Parallelogram In Exercises 5–8, find the area of the parallelogram with the given vertices.

| 5. | (0, 0), (1, 0), (2, 2), (3, 2)  | 6. | (0, 0), (3, 0), (4, 1), (7, 1)  |
|----|---------------------------------|----|---------------------------------|
| 7. | (0, 0), (-2, 0), (1, 5), (3, 5) | 8. | (0, 8), (8, 2), (0, 0), (8, -6) |