Extension

Operations of Complex Numbers in the Complex Plane

Previously, you learned how to add and subtract vectors geometrically in a coordinate plane. In a similar way, you can add and subtract complex numbers in a complex plane. The complex number a + bi can be represented by the vector $\mathbf{u} = \langle a, b \rangle$. For example, the complex number

1 + 2i is represented by the vector $\mathbf{u} = \langle 1, 2 \rangle$.

To add two complex numbers geometrically, first represent them as vectors \mathbf{u} and \mathbf{v} . Then position the vectors (without changing the lengths or directions) so that the initial point of the second vector \mathbf{v} coincides with the terminal point of the first vector \mathbf{u} . The sum

 $\mathbf{u} + \mathbf{v}$

is the vector formed by joining the initial point of the first vector \mathbf{u} with the terminal point of the second vector \mathbf{v} , as shown in Figure 1.1.

Adding Complex Numbers in the Complex Plane

Find (1 + 3i) + (2 + i).

EXAMPLE 1

Solution

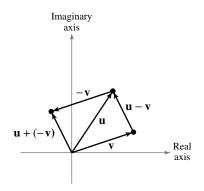
Let the complex numbers 1 + 3i and 2 + i be represented by the vectors $\mathbf{u} = \langle 1, 3 \rangle$ and $\mathbf{v} = \langle 2, 1 \rangle$, respectively. Graph the vector \mathbf{u} in the complex plane. Then, without changing the length or direction, graph the vector \mathbf{v} at the terminal point of \mathbf{u} . Draw $\mathbf{u} + \mathbf{v}$ by joining the initial point of \mathbf{u} with the terminal point of \mathbf{v} , see Figure 1.2. So, $\mathbf{u} + \mathbf{v} = \langle 3, 4 \rangle$ and

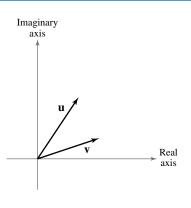
$$(1+3i) + (2+i) = 3 + 4i.$$

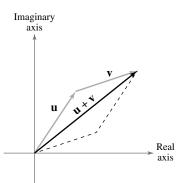
To subtract two complex numbers geometrically, you can use directed line segments with the *same* initial point. The difference

u – v

is the vector from the terminal point of v to the terminal point of u, which is equal to $\mathbf{u} + (-\mathbf{v})$, as shown in the figure below.







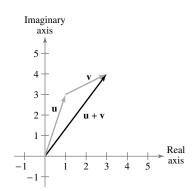


Figure 1.2

EXAMPLE 2 Subtracting Complex Numbers in the Complex Plane

Find (4 + 2i) - (3 - i).

Solution

Let the complex numbers 4 + 2i and 3 - i be represented by the vectors $\mathbf{u} = \langle 4, 2 \rangle$ and $\mathbf{v} = \langle 3, -1 \rangle$, respectively. Graph the vector \mathbf{u} in the complex plane. Then graph the vector $-\mathbf{v}$ at the terminal point of \mathbf{u} . Draw $\mathbf{u} + (-\mathbf{v})$ by joining the initial point of \mathbf{u} with the terminal point of $-\mathbf{v}$, as shown in Figure 1.3. So, $\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v}) = \langle 1, 3 \rangle$ and (4 + 2i) - (3 - i) = 1 + 3i.

The rule for multiplying complex numbers in trigonometric form is

$$z_1 z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)].$$

That is, multiply the moduli and add the arguments. The steps for multiplying two complex numbers geometrically using vectors are similar.

- 1. Represent the complex numbers as vectors **u** and **v**.
- **2.** Multiply $\|\mathbf{u}\|$ and $\|\mathbf{v}\|$ to find the length of the product vector.
- **3.** Add the direction angles of **u** and **v** to find the direction angle of the product vector.
- **4.** Write the product as a vector and as a complex number.

Multiplying Complex Numbers in the Complex Plane

Find $(\sqrt{3} + i)(1 + \sqrt{3}i)$.

EXAMPLE 3

Solution

Let $\mathbf{u} = \langle \sqrt{3}, 1 \rangle$ and $\mathbf{v} = \langle 1, \sqrt{3} \rangle$. Then $\|\mathbf{u}\| = \sqrt{(\sqrt{3})^2 + 1^2} = \sqrt{4} = 2$ and $\|\mathbf{v}\| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{4} = 2$. So, the magnitude of the product vector is $\|\mathbf{u}\| \times \|\mathbf{v}\| = 2 \times 2 = 4$.

Find the direction angles of **u** and **v**.

$$\theta_{\mathbf{u}} = \arctan\left(\frac{1}{\sqrt{3}}\right) \qquad \qquad \theta_{\mathbf{v}} = \arctan\left(\frac{\sqrt{3}}{1}\right)$$

$$= 30^{\circ} \qquad \qquad = 60^{\circ}$$

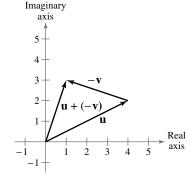
The sum of the direction angles is $30^{\circ} + 60^{\circ} = 90^{\circ}$. So, the product vector lies on the imaginary axis and is represented in vector form as (0, 4) as shown in Figure 1.4. The complex number form is 0 + 4i, or 4i.

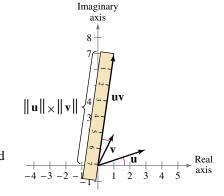
So, $(\sqrt{3} + i)(1 + \sqrt{3}i) = 4i$.

 $5 - 4 - \langle 0, 4 \rangle$ $3 - 2 - \langle 1, \sqrt{3} \rangle$ $1 - 2 - \langle \sqrt{3}, 1 \rangle$ $-1 - 1 - 1 - 2 - 3 - 4 - 5 \xrightarrow{\text{Real}} \text{axis}$

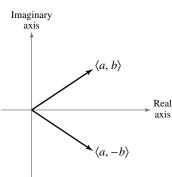
Imaginary

axis





You know that the complex conjugate of a + bi is a - bi. Written in vector form and graphed in the complex plane, you can see that the complex conjugate is a reflection in the *x*-axis of the complex number, as shown in the figure.



Let θ be the direction angle for $\langle a, b \rangle$. Then $-\theta$ is the direction angle for $\langle a, -b \rangle$. When multiplying two complex numbers, the direction angles are added. For complex conjugates, this sum is 0°. So, the product vector lies on the real axis and the product is a real number.

Finding Complex Conjugates in the Complex Plane

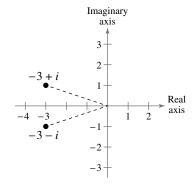
Graph the complex number

-3 + i

and its conjugate. Write the conjugate as a complex number.

Solution

The complex conjugate is obtained by a reflection of the complex number in the real axis, see Figure 1.5. So, the complex conjugate is -3 - i.



Exercises

Adding Complex Numbers in the Complex Plane In Exercises 1 and 2, find the sum.

1. (3 + i) + (2 + 5i) **2.** (8 - 2i) + (2 + 6i)

Subtracting Complex Numbers in the Complex Plane In Exercises 3 and 4, find the difference.

3.
$$(4 + 2i) - (6 + 4i)$$
 4. $3i - (-3 + 7i)$

Multiplying Complex Numbers in the Complex Plane In Exercises 5 and 6, find the product.

5.
$$(2+i)(2-i)$$
 4. $(2\sqrt{2}+2\sqrt{2}i)(-4i)$

Finding Complex Conjugates in the Complex Plane In Exercises 7 and 8, graph the complex number and its conjugate. Write the conjugate as a complex number.

7. 2 + 3i **8.** 5 - 4i