Project: Population The table shows the populations (in millions) of the United States for selected years from 1790 through 2010.
(Source: U.S. Census Bureau)

DATA	Year	Population, P
E	1790	3.929
\%	1800	5.308
)	1810	7.240
$\frac{\square}{\square}$	1820	9.638
\%	1830	12.866
丐	1840	17.069
3	1850	23.192
$\stackrel{\square}{5}$	1860	31.443
$\stackrel{\text { ¢ }}{ }$	1870	39.818
$\stackrel{5}{5}$	1880	50.189
\%	1890	62.980
	1900	76.212
	1910	92.228
	1920	106.022
	1930	123.203
	1940	132.165
	1950	151.326
	1960	179.323
	1970	203.302
	1980	226.542
	1990	248.718
	2000	281.425
	2010	308.746

(a) Use a graphing utility to plot the data. Let t represent the year, with $t=0$ corresponding to 1800 .
(b) Use the regression feature of the graphing utility to find a quadratic model for the data.
(c) Use the graphing utility to graph the model from part (b) and the original data in the same viewing window. How well does the model fit the data? Explain your reasoning.
(d) Consider the equation $0.00676 t^{2}+0.0072 t+5.911=330$. Use the discriminant to determine the number of solutions of the equation.
(e) Solve the equation from part (d) algebraically. Interpret the solution(s) in the context of the problem.
(f) Use the internet to find if the present U.S. population is over 330 million. Compare your answer with your answer from part (d).

